Moving Average Forecasting Introdução. Como você pode imaginar, estamos olhando para algumas das abordagens mais primitivas para a previsão. Mas espero que estas sejam pelo menos uma introdução interessante a algumas das questões de computação relacionadas à implementação de previsões em planilhas. Neste sentido, vamos continuar a partir do início e começar a trabalhar com previsões de média móvel. Previsões médias móveis. Todo mundo está familiarizado com as previsões de média móvel, independentemente de eles acreditam que são. Todos os estudantes universitários fazê-los o tempo todo. Pense nas suas pontuações dos testes num curso em que vai ter quatro testes durante o semestre. Vamos supor que você tem um 85 em seu primeiro teste. O que você poderia prever para sua pontuação do segundo teste O que você acha que seu professor iria prever para a sua próxima pontuação de teste O que você acha que seus amigos podem prever para a sua próxima pontuação de teste O que você acha que seus pais podem prever para sua pontuação próxima teste Independentemente de Todo o blabbing você pôde fazer a seus amigos e pais, eles e seu professor são muito prováveis esperar que você comece algo na área do 85 que você começou apenas. Bem, agora vamos supor que, apesar de sua auto-promoção para seus amigos, você superestimar-se e figura que você pode estudar menos para o segundo teste e assim você começa um 73. Agora o que são todos os interessados e despreocupado vai Antecipar você vai chegar em seu terceiro teste Existem duas abordagens muito provável para que eles desenvolvam uma estimativa, independentemente de se eles vão compartilhar com você. Eles podem dizer a si mesmos: "Esse cara está sempre soprando fumaça sobre suas espertinas. Hes que vai obter outro 73 se hes afortunado. Talvez os pais tentem ser mais solidários e dizer: "Bem, até agora você tem obtido um 85 e um 73, então talvez você deve figura em obter cerca de um (85 73) / 2 79. Eu não sei, talvez se você fez menos Festejando e werent abanando a doninhas em todo o lugar e se você começou a fazer muito mais estudando você poderia obter uma pontuação mais alta. quot Ambas as estimativas são, na verdade, média móvel previsões. O primeiro é usar apenas sua pontuação mais recente para prever o seu desempenho futuro. Isso é chamado de média móvel usando um período de dados. A segunda também é uma média móvel, mas usando dois períodos de dados. Vamos supor que todas essas pessoas rebentando em sua grande mente têm tipo de puto você fora e você decidir fazer bem no terceiro teste para suas próprias razões e colocar uma pontuação mais alta na frente de seus quotalliesquot. Você toma o teste e sua pontuação é realmente um 89 Todos, incluindo você mesmo, está impressionado. Então agora você tem o teste final do semestre chegando e, como de costume, você sente a necessidade de incitar todo mundo a fazer suas predições sobre como você vai fazer no último teste. Bem, espero que você veja o padrão. Agora, espero que você possa ver o padrão. Qual você acha que é o apito mais preciso enquanto trabalhamos. Agora vamos voltar para a nossa nova empresa de limpeza iniciada por sua meia irmã distante chamado Whistle While We Work. Você tem alguns dados de vendas anteriores representados na seção a seguir de uma planilha. Primeiro, apresentamos os dados para uma previsão média móvel de três períodos. A entrada para a célula C6 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C7 a C11. Observe como a média se move sobre os dados históricos mais recentes, mas usa exatamente os três períodos mais recentes disponíveis para cada previsão. Você também deve notar que nós realmente não precisamos fazer as previsões para os períodos passados, a fim de desenvolver a nossa previsão mais recente. Isto é definitivamente diferente do modelo de suavização exponencial. Ive incluído o quotpast previsõesquot porque vamos usá-los na próxima página da web para medir a validade de previsão. Agora eu quero apresentar os resultados análogos para uma previsão média móvel de dois períodos. A entrada para a célula C5 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C6 a C11. Observe como agora apenas as duas mais recentes peças de dados históricos são utilizados para cada previsão. Mais uma vez incluí as previsões quotpast para fins ilustrativos e para uso posterior na validação de previsão. Algumas outras coisas que são de importância notar. Para uma previsão média móvel de m-período, apenas os m valores de dados mais recentes são usados para fazer a previsão. Nada mais é necessário. Para uma previsão média móvel de m-período, ao fazer previsões quotpastquot, observe que a primeira predição ocorre no período m 1. Ambas as questões serão muito significativas quando desenvolvemos nosso código. Desenvolvendo a função de média móvel. Agora precisamos desenvolver o código para a previsão da média móvel que pode ser usado de forma mais flexível. O código segue. Observe que as entradas são para o número de períodos que você deseja usar na previsão ea matriz de valores históricos. Você pode armazená-lo em qualquer pasta de trabalho que você deseja. Função MovingAverage (Histórico, NumberOfPeriods) Como Único Declarar e inicializar variáveis Dim Item Como variante Dim Counter Como Inteiro Dim Acumulação como único Dim HistoricalSize As Inteiro Inicializando variáveis Counter 1 Acumulação 0 Determinando o tamanho da Historical array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Acumulando o número apropriado dos valores mais recentes anteriormente observados Acumulação Acumulação Histórico (HistoricalSize - NumberOfPeriods Counter) MovingAverage Acumulação / NumberOfPeriods O código será explicado na classe. Você deseja posicionar a função na planilha de modo que o resultado da computação apareça onde ele deve gostar da seguinte média de movimento: média de dados de séries temporais (observações igualmente espaçadas no tempo) de vários períodos consecutivos. Chamado de movimento porque é continuamente recalculado à medida que novos dados se tornam disponíveis, ele progride caindo o valor mais antigo e adicionando o valor mais recente. Por exemplo, a média móvel das vendas de seis meses pode ser calculada tomando a média das vendas de janeiro a junho, depois a média das vendas de fevereiro a julho, depois de março a agosto, e assim por diante. As médias móveis (1) reduzem o efeito de variações temporárias nos dados, (2) melhoram o ajuste dos dados para uma linha (um processo chamado suavização) para mostrar a tendência dos dados mais claramente e (3) realçam qualquer valor acima ou abaixo do valor tendência. Se você está calculando algo com variação muito alta o melhor que você pode ser capaz de fazer é descobrir a média móvel. Eu queria saber qual era a média móvel dos dados, então eu teria uma melhor compreensão de como estávamos fazendo. Quando você está tentando descobrir alguns números que mudam muitas vezes o melhor que você pode fazer é calcular a média móvel. O melhor do BusinessDictionary, entregue dailySmoothing dados remove variação aleatória e mostra tendências e componentes cíclicos Inerente na coleta de dados levados ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. Uma técnica freqüentemente usada na indústria é suavizar. Essa técnica, quando corretamente aplicada, revela mais claramente a tendência subjacente, os componentes sazonais e cíclicos. Existem dois grupos distintos de métodos de alisamento Métodos de média Métodos de suavização exponencial Tomar médias é a maneira mais simples de suavizar os dados Vamos primeiro investigar alguns métodos de média, como a média simples de todos os dados passados. Um gerente de um armazém quer saber o quanto um fornecedor típico oferece em unidades de 1000 dólares. Ele / ela toma uma amostra de 12 fornecedores, aleatoriamente, obtendo os seguintes resultados: A média computada ou média dos dados 10. O gerente decide usar isto como a estimativa para despesa de um fornecedor típico. Esta é uma boa ou má estimativa O erro quadrático médio é uma maneira de julgar o quão bom é um modelo Vamos calcular o erro quadrático médio. O valor verdadeiro do erro gasto menos o valor estimado. O erro ao quadrado é o erro acima, ao quadrado. O SSE é a soma dos erros quadrados. O MSE é a média dos erros quadrados. Resultados do MSE por exemplo Os resultados são: Erro e esquadrado Erros A estimativa 10 A questão surge: podemos usar a média para prever a renda se suspeitarmos de uma tendência? Um olhar para o gráfico abaixo mostra claramente que não devemos fazer isso. A média pondera todas as observações passadas igualmente Em resumo, afirmamos que A média simples ou média de todas as observações passadas é apenas uma estimativa útil para previsão quando não há tendências. Se houver tendências, use estimativas diferentes que levem em conta a tendência. A média pesa todas as observações passadas igualmente. Por exemplo, a média dos valores 3, 4, 5 é 4. Sabemos, é claro, que uma média é calculada adicionando todos os valores e dividindo a soma pelo número de valores. Outra forma de calcular a média é adicionando cada valor dividido pelo número de valores, ou 3/3 4/3 5/3 1 1.3333 1.6667 4. O multiplicador 1/3 é chamado de peso. Em geral: barra fração soma esquerda (fratura direita) x1 esquerda (fratura direita) x2,. ,, Esquerda (frac direito) xn. O (esquerdo (direito de fracto)) são os pesos e, naturalmente, somam a 1.Forecasting por técnicas de suavização Este local é uma parte dos objetos de aprendizagem de E-laboratórios de JavaScript para a tomada de decisão. Outros JavaScript nesta série são categorizados sob diferentes áreas de aplicações na seção MENU nesta página. Uma série de tempo é uma seqüência de observações que são ordenadas no tempo. Inerente na coleta de dados levados ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. As técnicas amplamente utilizadas são suavização. Estas técnicas, quando devidamente aplicadas, revelam mais claramente as tendências subjacentes. Insira a série de tempo em ordem de linha em seqüência, começando pelo canto superior esquerdo e o (s) parâmetro (s) e, em seguida, clique no botão Calcular para obter uma previsão de um período antecipado. Caixas em branco não são incluídas nos cálculos, mas zeros são. Ao inserir seus dados para mover de célula para célula na matriz de dados use a tecla Tab não seta ou digite chaves. Características de séries temporais, que podem ser reveladas ao examinar seu gráfico. Com os valores previstos, eo comportamento residual, modelagem de previsão de condições. Médias móveis: As médias móveis classificam-se entre as técnicas mais populares para o pré-processamento de séries temporais. Eles são usados para filtrar o ruído branco aleatório dos dados, para tornar a série de tempo mais suave ou mesmo para enfatizar certos componentes informativos contidos na série de tempo. Suavização Exponencial: Este é um esquema muito popular para produzir uma Série de Tempo suavizada. Enquanto que em Médias Móveis as observações passadas são ponderadas igualmente, a Suavização Exponencial atribui pesos exponencialmente decrescentes à medida que a observação avança. Em outras palavras, as observações recentes recebem relativamente mais peso na previsão do que as observações mais antigas. O Double Exponential Smoothing é melhor para lidar com as tendências. Triple Exponential Smoothing é melhor no manuseio de tendências de parabola. Uma média móvel exponencialmente ponderada com uma constante de suavização a. Corresponde aproximadamente a uma média móvel simples de comprimento (isto é, período) n, onde a e n estão relacionados por: a 2 / (n1) OR n (2 - a) / a. Assim, por exemplo, uma média móvel exponencialmente ponderada com uma constante de suavização igual a 0,1 corresponderia aproximadamente a uma média móvel de 19 dias. E uma média móvel simples de 40 dias corresponderia aproximadamente a uma média móvel exponencialmente ponderada com uma constante de suavização igual a 0,04878. Suavização Linear Exponencial de Holts: Suponha que a série de tempo não é sazonal, mas exibe tendência. Holts método estima tanto o nível atual ea tendência atual. Observe que a média móvel simples é caso especial da suavização exponencial, definindo o período da média móvel para a parte inteira de (2-Alpha) / Alpha. Para a maioria dos dados empresariais, um parâmetro Alpha menor que 0,40 é frequentemente eficaz. No entanto, pode-se realizar uma busca de grade do espaço de parâmetro, com 0,1 a 0,9, com incrementos de 0,1. Então o melhor alfa tem o menor erro médio absoluto (erro MA). Como comparar vários métodos de alisamento: Embora existam indicadores numéricos para avaliar a precisão da técnica de previsão, a abordagem mais ampla consiste na comparação visual de várias previsões para avaliar a sua precisão e escolher entre os vários métodos de previsão. Nesta abordagem, é necessário plotar (usando, por exemplo, Excel) no mesmo gráfico os valores originais de uma variável de série temporal e os valores previstos de vários métodos de previsão diferentes, facilitando assim uma comparação visual. Você pode gostar de usar as Previsões Passadas por Técnicas de Suavização JavaScript para obter os valores de previsão anteriores com base em técnicas de suavização que usam apenas um único parâmetro. Holt e Winters usam dois e três parâmetros, respectivamente, portanto, não é uma tarefa fácil selecionar os valores ótimos, ou mesmo próximos, ótimos por tentativa e erros para os parâmetros. A suavização exponencial única enfatiza a perspectiva de curto alcance que define o nível para a última observação e é baseada na condição de que não há tendência. A regressão linear, que se ajusta a uma linha de mínimos quadrados aos dados históricos (ou dados históricos transformados), representa a faixa de longo alcance, que está condicionada à tendência básica. Holts linear suavização exponencial captura informações sobre tendência recente. Os parâmetros no modelo de Holts são níveis-parâmetro que devem ser diminuídos quando a quantidade de variação de dados é grande, e as tendências-parâmetro devem ser aumentadas se a tendência de direção recente é apoiada pelo causal alguns fatores. Previsão de Curto Prazo: Observe que cada JavaScript nesta página fornece uma previsão de um passo adiante. Para obter uma previsão de duas etapas. Basta adicionar o valor previsto ao final dos dados de séries temporais e, em seguida, clicar no mesmo botão Calcular. Você pode repetir este processo por algumas vezes para obter as previsões de curto prazo necessárias. Técnicas de suavização Quando os dados coletados ao longo do tempo exibem variação aleatória, técnicas de suavização podem ser usadas para reduzir ou cancelar o efeito dessas variações. Quando aplicadas adequadamente, essas técnicas alisam a variação aleatória nos dados das séries cronológicas para revelar tendências subjacentes. XLMiner apresenta quatro diferentes técnicas de suavização: Exponencial, Moving Average, Double Exponential e Holt-Winters. Exponencial e Média Móvel são técnicas de alisamento relativamente simples e não devem ser realizadas em conjuntos de dados envolvendo sazonalidade. Double Exponential e Holt-Winters são técnicas mais avançadas que podem ser usadas em conjuntos de dados que envolvem sazonalidade. Exponential Smoothing é uma das técnicas de suavização mais populares devido à sua flexibilidade, facilidade de cálculo e bom desempenho. A suavização exponencial utiliza um cálculo de média simples para atribuir pesos exponencialmente decrescentes a partir das observações mais recentes. Novas observações são dadas relativamente mais peso no cálculo médio do que as observações mais antigas. A ferramenta Exponential Smoothing usa as seguintes fórmulas. Observações originais são indicadas por t começando em t 0 é o fator de alisamento que está entre 0 e 1 Suavização Exponencial só deve ser usado quando o conjunto de dados não contém sazonalidade. A previsão é um valor constante que é o valor suavizado da última observação. Alisamento Médio em Movimento Na Suavização de Média Móvel, cada observação recebe um peso igual, e cada observação é prevista usando a média da (s) observação (ões) anterior (es). Usando a série de tempo X 1. X 2. X 3. X t. Esta técnica de suavização prediz X tk como se segue. Onde k é o parâmetro de suavização. XLMiner permite um valor de parâmetro entre 2 e t-1 onde t é o número de observações no conjunto de dados. Observe que ao escolher esse parâmetro, um grande valor de parâmetro suavizará os dados, enquanto um pequeno valor de parâmetro suavizará os dados. As últimas três observações irão prever as futuras observações. Tal como acontece com Alisamento Exponencial, esta técnica não deve ser aplicada quando a sazonalidade está presente no conjunto de dados. Suavização Exponencial Dupla A Suavização Exponencial Dupla pode ser definida como a aplicação recursiva de um filtro exponencial duas vezes em uma série de tempo. O Double Exponential Smoothing não deve ser usado quando os dados incluem sazonalidade. Esta técnica introduz uma segunda equação que inclui um parâmetro de tendência, portanto, esta técnica deve ser usada quando uma tendência é inerente ao conjunto de dados, mas não quando a sazonalidade está presente. O Double Exponential Smoothing é definido pelas seguintes fórmulas. A equação de previsão é: X tk A t K B t. K 1, 2, 3. onde, a denota o parâmetro Alfa, e b denota os parâmetros de tendência. Estes dois parâmetros podem ser introduzidos manualmente. O XLMiner inclui um recurso de otimização que irá escolher os melhores valores para parâmetros alfa e de tendência com base no erro de quadrado médio de previsão. Se o parâmetro de tendência é 0, então esta técnica é equivalente à técnica de Suavização Exponencial. (No entanto, os resultados podem não ser idênticos devido a diferentes métodos de inicialização para essas duas técnicas.) Holt Winters Smoothing introduz um terceiro parâmetro (g) para considerar a sazonalidade (ou periodicidade) em um conjunto de dados. O conjunto resultante de equações é chamado de Holt-Winters método, após os nomes dos inventores. O método Holt-Winters pode ser usado em conjuntos de dados envolvendo tendência e sazonalidade (a, b, g). Os valores para todos os três parâmetros podem variar entre 0 e 1. Os três modelos seguintes associados a este método. Multiplicativa: X t (A t B t) S t e t onde A t e B t são estimativas iniciais previamente calculadas. S t é o fator sazonal médio para a quinta temporada. A suavização de Holt-Winters é semelhante à Suavização Exponencial se b e g 0, e é semelhante à Suavização Exponencial Dupla se g 0.
No comments:
Post a Comment